Week 15 - SCIENCE NOTE PAGE
 Chemical Formulas \& Equations

Remember, The Law of Conservation of Mass

- The Law of Conservation of Mass states: the mass of substances does \qquad change during chemical reactions.

Writing Chemical Formulas

- Chemical formulas represent the atoms of each element in a molecule of a substance
- Example: $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}=$ rubbing alcohol $\mathrm{C}_{3}=\ldots$ atoms of carbon $\mathrm{H}_{8}=\ldots$ atoms of hydrogen
$0=$ \qquad atom of oxygen

Ionic Compound Formulas

- While ionic compounds deal with ions -charged atoms- the compound formulas are balanced or neutral with a charge of \qquad .
- Example: Salt -Sodium Chloride (NaCl)

1. Sodium (Na) ion has a positive charge of one ($\mathrm{Na} 1+$)
2. Chloride (CI), has a negative charge of one (Cl1-).
3. Positive and negative charges have the sum of zero if there is one sodium atom for every chlorine, so the formula NaCl is correct.

Covalent Compound Formulas

- For a covalent compound, the chemical formula shows how many \qquad of each kind join together to form the molecules of the compound. Therefore, it is called a molecular formula. are in the molecular formula.
- Example: Sulfur trioxide $=\mathrm{SO}_{3}$
- TRY ONE: di-nitrogen tri-oxide
-

Using Chemical Formulas to write Chemical Equations

Number of atoms	Prefix
1	mono-
2	di-
3	tri-
4	tetra-
5	penta-
6	hexa-
7	hepta-
8	octa-
9	nona-

- Chemical formulas (example: $\mathrm{H}_{2} \mathrm{O}$) are used to write chemical \qquad .
- Just like a math equation, a chemical equation shows a relationship between substances on the left (reactants) and right (products) sides of the equation.
- A "__" sign means two substances are added together.
- The " \qquad " is similar to an equal sign. (\rightarrow means "yields")
- Example: the reaction of carbon and oxygen to form carbon dioxide.

$\mathrm{C}+\mathrm{O}_{2}$	$\rightarrow \mathrm{CO}_{2}$
reactants	product

- Example: Aluminum is not found "pure" in nature. A chemical reaction is used to produce the aluminum for your aluminum foil. Here's the reaction and it's chemical equation:
aluminum chloride + potassium \rightarrow aluminum + potassium chloride

$$
\mathrm{AlCl}_{3}+\mathrm{K} \rightarrow \mathrm{Al}+\mathrm{KCl}
$$

\qquad \rightarrow \qquad

- The equation tells you the basic facts of the reaction. But as written, this reaction violates a basic law of nature. Something is missing. What is it?

Balancing Equations

- Both sides of a chemical equation need to have the \qquad number of atoms of each element for the equation to be \qquad .
- How to balance chemical equations:

1. Write the chemical equation with chemical symbols.
2. \qquad the number of atoms of each element on both sides of the equation.
3. Balance atoms using coefficients. (A coefficient is a number placed \qquad the element or compound.)
4. Check to make sure the equation is balanced.

- Example: balance the aluminum reaction

$$
\mathrm{AlCl}_{3}+\mathrm{K} \rightarrow \mathrm{Al}+\mathrm{KCl}
$$

$$
\ldots \mathrm{AlCl}_{3}+\ldots \ldots \mathrm{K} \rightarrow \ldots \mathrm{Al}+\ldots \ldots \mathrm{KCl}
$$

